1. Packages
  2. Azure Classic
  3. API Docs
  4. machinelearning
  5. InferenceCluster

We recommend using Azure Native.

Azure v6.22.0 published on Tuesday, Apr 1, 2025 by Pulumi

azure.machinelearning.InferenceCluster

Explore with Pulumi AI

Manages a Machine Learning Inference Cluster.

NOTE: The Machine Learning Inference Cluster resource is used to attach an existing AKS cluster to the Machine Learning Workspace, it doesn’t create the AKS cluster itself. Therefore it can only be created and deleted, not updated. Any change to the configuration will recreate the resource.

Example Usage

import * as pulumi from "@pulumi/pulumi";
import * as azure from "@pulumi/azure";

const current = azure.core.getClientConfig({});
const example = new azure.core.ResourceGroup("example", {
    name: "example-rg",
    location: "west europe",
    tags: {
        stage: "example",
    },
});
const exampleInsights = new azure.appinsights.Insights("example", {
    name: "example-ai",
    location: example.location,
    resourceGroupName: example.name,
    applicationType: "web",
});
const exampleKeyVault = new azure.keyvault.KeyVault("example", {
    name: "example-kv",
    location: example.location,
    resourceGroupName: example.name,
    tenantId: current.then(current => current.tenantId),
    skuName: "standard",
    purgeProtectionEnabled: true,
});
const exampleAccount = new azure.storage.Account("example", {
    name: "examplesa",
    location: example.location,
    resourceGroupName: example.name,
    accountTier: "Standard",
    accountReplicationType: "LRS",
});
const exampleWorkspace = new azure.machinelearning.Workspace("example", {
    name: "example-mlw",
    location: example.location,
    resourceGroupName: example.name,
    applicationInsightsId: exampleInsights.id,
    keyVaultId: exampleKeyVault.id,
    storageAccountId: exampleAccount.id,
    identity: {
        type: "SystemAssigned",
    },
});
const exampleVirtualNetwork = new azure.network.VirtualNetwork("example", {
    name: "example-vnet",
    addressSpaces: ["10.1.0.0/16"],
    location: example.location,
    resourceGroupName: example.name,
});
const exampleSubnet = new azure.network.Subnet("example", {
    name: "example-subnet",
    resourceGroupName: example.name,
    virtualNetworkName: exampleVirtualNetwork.name,
    addressPrefixes: ["10.1.0.0/24"],
});
const exampleKubernetesCluster = new azure.containerservice.KubernetesCluster("example", {
    name: "example-aks",
    location: example.location,
    resourceGroupName: example.name,
    dnsPrefixPrivateCluster: "prefix",
    defaultNodePool: {
        name: "default",
        nodeCount: 3,
        vmSize: "Standard_D3_v2",
        vnetSubnetId: exampleSubnet.id,
    },
    identity: {
        type: "SystemAssigned",
    },
});
const exampleInferenceCluster = new azure.machinelearning.InferenceCluster("example", {
    name: "example",
    location: example.location,
    clusterPurpose: "FastProd",
    kubernetesClusterId: exampleKubernetesCluster.id,
    description: "This is an example cluster used with Terraform",
    machineLearningWorkspaceId: exampleWorkspace.id,
    tags: {
        stage: "example",
    },
});
Copy
import pulumi
import pulumi_azure as azure

current = azure.core.get_client_config()
example = azure.core.ResourceGroup("example",
    name="example-rg",
    location="west europe",
    tags={
        "stage": "example",
    })
example_insights = azure.appinsights.Insights("example",
    name="example-ai",
    location=example.location,
    resource_group_name=example.name,
    application_type="web")
example_key_vault = azure.keyvault.KeyVault("example",
    name="example-kv",
    location=example.location,
    resource_group_name=example.name,
    tenant_id=current.tenant_id,
    sku_name="standard",
    purge_protection_enabled=True)
example_account = azure.storage.Account("example",
    name="examplesa",
    location=example.location,
    resource_group_name=example.name,
    account_tier="Standard",
    account_replication_type="LRS")
example_workspace = azure.machinelearning.Workspace("example",
    name="example-mlw",
    location=example.location,
    resource_group_name=example.name,
    application_insights_id=example_insights.id,
    key_vault_id=example_key_vault.id,
    storage_account_id=example_account.id,
    identity={
        "type": "SystemAssigned",
    })
example_virtual_network = azure.network.VirtualNetwork("example",
    name="example-vnet",
    address_spaces=["10.1.0.0/16"],
    location=example.location,
    resource_group_name=example.name)
example_subnet = azure.network.Subnet("example",
    name="example-subnet",
    resource_group_name=example.name,
    virtual_network_name=example_virtual_network.name,
    address_prefixes=["10.1.0.0/24"])
example_kubernetes_cluster = azure.containerservice.KubernetesCluster("example",
    name="example-aks",
    location=example.location,
    resource_group_name=example.name,
    dns_prefix_private_cluster="prefix",
    default_node_pool={
        "name": "default",
        "node_count": 3,
        "vm_size": "Standard_D3_v2",
        "vnet_subnet_id": example_subnet.id,
    },
    identity={
        "type": "SystemAssigned",
    })
example_inference_cluster = azure.machinelearning.InferenceCluster("example",
    name="example",
    location=example.location,
    cluster_purpose="FastProd",
    kubernetes_cluster_id=example_kubernetes_cluster.id,
    description="This is an example cluster used with Terraform",
    machine_learning_workspace_id=example_workspace.id,
    tags={
        "stage": "example",
    })
Copy
package main

import (
	"github.com/pulumi/pulumi-azure/sdk/v6/go/azure/appinsights"
	"github.com/pulumi/pulumi-azure/sdk/v6/go/azure/containerservice"
	"github.com/pulumi/pulumi-azure/sdk/v6/go/azure/core"
	"github.com/pulumi/pulumi-azure/sdk/v6/go/azure/keyvault"
	"github.com/pulumi/pulumi-azure/sdk/v6/go/azure/machinelearning"
	"github.com/pulumi/pulumi-azure/sdk/v6/go/azure/network"
	"github.com/pulumi/pulumi-azure/sdk/v6/go/azure/storage"
	"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
)

func main() {
	pulumi.Run(func(ctx *pulumi.Context) error {
		current, err := core.GetClientConfig(ctx, map[string]interface{}{}, nil)
		if err != nil {
			return err
		}
		example, err := core.NewResourceGroup(ctx, "example", &core.ResourceGroupArgs{
			Name:     pulumi.String("example-rg"),
			Location: pulumi.String("west europe"),
			Tags: pulumi.StringMap{
				"stage": pulumi.String("example"),
			},
		})
		if err != nil {
			return err
		}
		exampleInsights, err := appinsights.NewInsights(ctx, "example", &appinsights.InsightsArgs{
			Name:              pulumi.String("example-ai"),
			Location:          example.Location,
			ResourceGroupName: example.Name,
			ApplicationType:   pulumi.String("web"),
		})
		if err != nil {
			return err
		}
		exampleKeyVault, err := keyvault.NewKeyVault(ctx, "example", &keyvault.KeyVaultArgs{
			Name:                   pulumi.String("example-kv"),
			Location:               example.Location,
			ResourceGroupName:      example.Name,
			TenantId:               pulumi.String(current.TenantId),
			SkuName:                pulumi.String("standard"),
			PurgeProtectionEnabled: pulumi.Bool(true),
		})
		if err != nil {
			return err
		}
		exampleAccount, err := storage.NewAccount(ctx, "example", &storage.AccountArgs{
			Name:                   pulumi.String("examplesa"),
			Location:               example.Location,
			ResourceGroupName:      example.Name,
			AccountTier:            pulumi.String("Standard"),
			AccountReplicationType: pulumi.String("LRS"),
		})
		if err != nil {
			return err
		}
		exampleWorkspace, err := machinelearning.NewWorkspace(ctx, "example", &machinelearning.WorkspaceArgs{
			Name:                  pulumi.String("example-mlw"),
			Location:              example.Location,
			ResourceGroupName:     example.Name,
			ApplicationInsightsId: exampleInsights.ID(),
			KeyVaultId:            exampleKeyVault.ID(),
			StorageAccountId:      exampleAccount.ID(),
			Identity: &machinelearning.WorkspaceIdentityArgs{
				Type: pulumi.String("SystemAssigned"),
			},
		})
		if err != nil {
			return err
		}
		exampleVirtualNetwork, err := network.NewVirtualNetwork(ctx, "example", &network.VirtualNetworkArgs{
			Name: pulumi.String("example-vnet"),
			AddressSpaces: pulumi.StringArray{
				pulumi.String("10.1.0.0/16"),
			},
			Location:          example.Location,
			ResourceGroupName: example.Name,
		})
		if err != nil {
			return err
		}
		exampleSubnet, err := network.NewSubnet(ctx, "example", &network.SubnetArgs{
			Name:               pulumi.String("example-subnet"),
			ResourceGroupName:  example.Name,
			VirtualNetworkName: exampleVirtualNetwork.Name,
			AddressPrefixes: pulumi.StringArray{
				pulumi.String("10.1.0.0/24"),
			},
		})
		if err != nil {
			return err
		}
		exampleKubernetesCluster, err := containerservice.NewKubernetesCluster(ctx, "example", &containerservice.KubernetesClusterArgs{
			Name:                    pulumi.String("example-aks"),
			Location:                example.Location,
			ResourceGroupName:       example.Name,
			DnsPrefixPrivateCluster: pulumi.String("prefix"),
			DefaultNodePool: &containerservice.KubernetesClusterDefaultNodePoolArgs{
				Name:         pulumi.String("default"),
				NodeCount:    pulumi.Int(3),
				VmSize:       pulumi.String("Standard_D3_v2"),
				VnetSubnetId: exampleSubnet.ID(),
			},
			Identity: &containerservice.KubernetesClusterIdentityArgs{
				Type: pulumi.String("SystemAssigned"),
			},
		})
		if err != nil {
			return err
		}
		_, err = machinelearning.NewInferenceCluster(ctx, "example", &machinelearning.InferenceClusterArgs{
			Name:                       pulumi.String("example"),
			Location:                   example.Location,
			ClusterPurpose:             pulumi.String("FastProd"),
			KubernetesClusterId:        exampleKubernetesCluster.ID(),
			Description:                pulumi.String("This is an example cluster used with Terraform"),
			MachineLearningWorkspaceId: exampleWorkspace.ID(),
			Tags: pulumi.StringMap{
				"stage": pulumi.String("example"),
			},
		})
		if err != nil {
			return err
		}
		return nil
	})
}
Copy
using System.Collections.Generic;
using System.Linq;
using Pulumi;
using Azure = Pulumi.Azure;

return await Deployment.RunAsync(() => 
{
    var current = Azure.Core.GetClientConfig.Invoke();

    var example = new Azure.Core.ResourceGroup("example", new()
    {
        Name = "example-rg",
        Location = "west europe",
        Tags = 
        {
            { "stage", "example" },
        },
    });

    var exampleInsights = new Azure.AppInsights.Insights("example", new()
    {
        Name = "example-ai",
        Location = example.Location,
        ResourceGroupName = example.Name,
        ApplicationType = "web",
    });

    var exampleKeyVault = new Azure.KeyVault.KeyVault("example", new()
    {
        Name = "example-kv",
        Location = example.Location,
        ResourceGroupName = example.Name,
        TenantId = current.Apply(getClientConfigResult => getClientConfigResult.TenantId),
        SkuName = "standard",
        PurgeProtectionEnabled = true,
    });

    var exampleAccount = new Azure.Storage.Account("example", new()
    {
        Name = "examplesa",
        Location = example.Location,
        ResourceGroupName = example.Name,
        AccountTier = "Standard",
        AccountReplicationType = "LRS",
    });

    var exampleWorkspace = new Azure.MachineLearning.Workspace("example", new()
    {
        Name = "example-mlw",
        Location = example.Location,
        ResourceGroupName = example.Name,
        ApplicationInsightsId = exampleInsights.Id,
        KeyVaultId = exampleKeyVault.Id,
        StorageAccountId = exampleAccount.Id,
        Identity = new Azure.MachineLearning.Inputs.WorkspaceIdentityArgs
        {
            Type = "SystemAssigned",
        },
    });

    var exampleVirtualNetwork = new Azure.Network.VirtualNetwork("example", new()
    {
        Name = "example-vnet",
        AddressSpaces = new[]
        {
            "10.1.0.0/16",
        },
        Location = example.Location,
        ResourceGroupName = example.Name,
    });

    var exampleSubnet = new Azure.Network.Subnet("example", new()
    {
        Name = "example-subnet",
        ResourceGroupName = example.Name,
        VirtualNetworkName = exampleVirtualNetwork.Name,
        AddressPrefixes = new[]
        {
            "10.1.0.0/24",
        },
    });

    var exampleKubernetesCluster = new Azure.ContainerService.KubernetesCluster("example", new()
    {
        Name = "example-aks",
        Location = example.Location,
        ResourceGroupName = example.Name,
        DnsPrefixPrivateCluster = "prefix",
        DefaultNodePool = new Azure.ContainerService.Inputs.KubernetesClusterDefaultNodePoolArgs
        {
            Name = "default",
            NodeCount = 3,
            VmSize = "Standard_D3_v2",
            VnetSubnetId = exampleSubnet.Id,
        },
        Identity = new Azure.ContainerService.Inputs.KubernetesClusterIdentityArgs
        {
            Type = "SystemAssigned",
        },
    });

    var exampleInferenceCluster = new Azure.MachineLearning.InferenceCluster("example", new()
    {
        Name = "example",
        Location = example.Location,
        ClusterPurpose = "FastProd",
        KubernetesClusterId = exampleKubernetesCluster.Id,
        Description = "This is an example cluster used with Terraform",
        MachineLearningWorkspaceId = exampleWorkspace.Id,
        Tags = 
        {
            { "stage", "example" },
        },
    });

});
Copy
package generated_program;

import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.azure.core.CoreFunctions;
import com.pulumi.azure.core.ResourceGroup;
import com.pulumi.azure.core.ResourceGroupArgs;
import com.pulumi.azure.appinsights.Insights;
import com.pulumi.azure.appinsights.InsightsArgs;
import com.pulumi.azure.keyvault.KeyVault;
import com.pulumi.azure.keyvault.KeyVaultArgs;
import com.pulumi.azure.storage.Account;
import com.pulumi.azure.storage.AccountArgs;
import com.pulumi.azure.machinelearning.Workspace;
import com.pulumi.azure.machinelearning.WorkspaceArgs;
import com.pulumi.azure.machinelearning.inputs.WorkspaceIdentityArgs;
import com.pulumi.azure.network.VirtualNetwork;
import com.pulumi.azure.network.VirtualNetworkArgs;
import com.pulumi.azure.network.Subnet;
import com.pulumi.azure.network.SubnetArgs;
import com.pulumi.azure.containerservice.KubernetesCluster;
import com.pulumi.azure.containerservice.KubernetesClusterArgs;
import com.pulumi.azure.containerservice.inputs.KubernetesClusterDefaultNodePoolArgs;
import com.pulumi.azure.containerservice.inputs.KubernetesClusterIdentityArgs;
import com.pulumi.azure.machinelearning.InferenceCluster;
import com.pulumi.azure.machinelearning.InferenceClusterArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;

public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }

    public static void stack(Context ctx) {
        final var current = CoreFunctions.getClientConfig();

        var example = new ResourceGroup("example", ResourceGroupArgs.builder()
            .name("example-rg")
            .location("west europe")
            .tags(Map.of("stage", "example"))
            .build());

        var exampleInsights = new Insights("exampleInsights", InsightsArgs.builder()
            .name("example-ai")
            .location(example.location())
            .resourceGroupName(example.name())
            .applicationType("web")
            .build());

        var exampleKeyVault = new KeyVault("exampleKeyVault", KeyVaultArgs.builder()
            .name("example-kv")
            .location(example.location())
            .resourceGroupName(example.name())
            .tenantId(current.applyValue(getClientConfigResult -> getClientConfigResult.tenantId()))
            .skuName("standard")
            .purgeProtectionEnabled(true)
            .build());

        var exampleAccount = new Account("exampleAccount", AccountArgs.builder()
            .name("examplesa")
            .location(example.location())
            .resourceGroupName(example.name())
            .accountTier("Standard")
            .accountReplicationType("LRS")
            .build());

        var exampleWorkspace = new Workspace("exampleWorkspace", WorkspaceArgs.builder()
            .name("example-mlw")
            .location(example.location())
            .resourceGroupName(example.name())
            .applicationInsightsId(exampleInsights.id())
            .keyVaultId(exampleKeyVault.id())
            .storageAccountId(exampleAccount.id())
            .identity(WorkspaceIdentityArgs.builder()
                .type("SystemAssigned")
                .build())
            .build());

        var exampleVirtualNetwork = new VirtualNetwork("exampleVirtualNetwork", VirtualNetworkArgs.builder()
            .name("example-vnet")
            .addressSpaces("10.1.0.0/16")
            .location(example.location())
            .resourceGroupName(example.name())
            .build());

        var exampleSubnet = new Subnet("exampleSubnet", SubnetArgs.builder()
            .name("example-subnet")
            .resourceGroupName(example.name())
            .virtualNetworkName(exampleVirtualNetwork.name())
            .addressPrefixes("10.1.0.0/24")
            .build());

        var exampleKubernetesCluster = new KubernetesCluster("exampleKubernetesCluster", KubernetesClusterArgs.builder()
            .name("example-aks")
            .location(example.location())
            .resourceGroupName(example.name())
            .dnsPrefixPrivateCluster("prefix")
            .defaultNodePool(KubernetesClusterDefaultNodePoolArgs.builder()
                .name("default")
                .nodeCount(3)
                .vmSize("Standard_D3_v2")
                .vnetSubnetId(exampleSubnet.id())
                .build())
            .identity(KubernetesClusterIdentityArgs.builder()
                .type("SystemAssigned")
                .build())
            .build());

        var exampleInferenceCluster = new InferenceCluster("exampleInferenceCluster", InferenceClusterArgs.builder()
            .name("example")
            .location(example.location())
            .clusterPurpose("FastProd")
            .kubernetesClusterId(exampleKubernetesCluster.id())
            .description("This is an example cluster used with Terraform")
            .machineLearningWorkspaceId(exampleWorkspace.id())
            .tags(Map.of("stage", "example"))
            .build());

    }
}
Copy
resources:
  example:
    type: azure:core:ResourceGroup
    properties:
      name: example-rg
      location: west europe
      tags:
        stage: example
  exampleInsights:
    type: azure:appinsights:Insights
    name: example
    properties:
      name: example-ai
      location: ${example.location}
      resourceGroupName: ${example.name}
      applicationType: web
  exampleKeyVault:
    type: azure:keyvault:KeyVault
    name: example
    properties:
      name: example-kv
      location: ${example.location}
      resourceGroupName: ${example.name}
      tenantId: ${current.tenantId}
      skuName: standard
      purgeProtectionEnabled: true
  exampleAccount:
    type: azure:storage:Account
    name: example
    properties:
      name: examplesa
      location: ${example.location}
      resourceGroupName: ${example.name}
      accountTier: Standard
      accountReplicationType: LRS
  exampleWorkspace:
    type: azure:machinelearning:Workspace
    name: example
    properties:
      name: example-mlw
      location: ${example.location}
      resourceGroupName: ${example.name}
      applicationInsightsId: ${exampleInsights.id}
      keyVaultId: ${exampleKeyVault.id}
      storageAccountId: ${exampleAccount.id}
      identity:
        type: SystemAssigned
  exampleVirtualNetwork:
    type: azure:network:VirtualNetwork
    name: example
    properties:
      name: example-vnet
      addressSpaces:
        - 10.1.0.0/16
      location: ${example.location}
      resourceGroupName: ${example.name}
  exampleSubnet:
    type: azure:network:Subnet
    name: example
    properties:
      name: example-subnet
      resourceGroupName: ${example.name}
      virtualNetworkName: ${exampleVirtualNetwork.name}
      addressPrefixes:
        - 10.1.0.0/24
  exampleKubernetesCluster:
    type: azure:containerservice:KubernetesCluster
    name: example
    properties:
      name: example-aks
      location: ${example.location}
      resourceGroupName: ${example.name}
      dnsPrefixPrivateCluster: prefix
      defaultNodePool:
        name: default
        nodeCount: 3
        vmSize: Standard_D3_v2
        vnetSubnetId: ${exampleSubnet.id}
      identity:
        type: SystemAssigned
  exampleInferenceCluster:
    type: azure:machinelearning:InferenceCluster
    name: example
    properties:
      name: example
      location: ${example.location}
      clusterPurpose: FastProd
      kubernetesClusterId: ${exampleKubernetesCluster.id}
      description: This is an example cluster used with Terraform
      machineLearningWorkspaceId: ${exampleWorkspace.id}
      tags:
        stage: example
variables:
  current:
    fn::invoke:
      function: azure:core:getClientConfig
      arguments: {}
Copy

Create InferenceCluster Resource

Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.

Constructor syntax

new InferenceCluster(name: string, args: InferenceClusterArgs, opts?: CustomResourceOptions);
@overload
def InferenceCluster(resource_name: str,
                     args: InferenceClusterArgs,
                     opts: Optional[ResourceOptions] = None)

@overload
def InferenceCluster(resource_name: str,
                     opts: Optional[ResourceOptions] = None,
                     kubernetes_cluster_id: Optional[str] = None,
                     machine_learning_workspace_id: Optional[str] = None,
                     cluster_purpose: Optional[str] = None,
                     description: Optional[str] = None,
                     identity: Optional[InferenceClusterIdentityArgs] = None,
                     location: Optional[str] = None,
                     name: Optional[str] = None,
                     ssl: Optional[InferenceClusterSslArgs] = None,
                     tags: Optional[Mapping[str, str]] = None)
func NewInferenceCluster(ctx *Context, name string, args InferenceClusterArgs, opts ...ResourceOption) (*InferenceCluster, error)
public InferenceCluster(string name, InferenceClusterArgs args, CustomResourceOptions? opts = null)
public InferenceCluster(String name, InferenceClusterArgs args)
public InferenceCluster(String name, InferenceClusterArgs args, CustomResourceOptions options)
type: azure:machinelearning:InferenceCluster
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.

Parameters

name This property is required. string
The unique name of the resource.
args This property is required. InferenceClusterArgs
The arguments to resource properties.
opts CustomResourceOptions
Bag of options to control resource's behavior.
resource_name This property is required. str
The unique name of the resource.
args This property is required. InferenceClusterArgs
The arguments to resource properties.
opts ResourceOptions
Bag of options to control resource's behavior.
ctx Context
Context object for the current deployment.
name This property is required. string
The unique name of the resource.
args This property is required. InferenceClusterArgs
The arguments to resource properties.
opts ResourceOption
Bag of options to control resource's behavior.
name This property is required. string
The unique name of the resource.
args This property is required. InferenceClusterArgs
The arguments to resource properties.
opts CustomResourceOptions
Bag of options to control resource's behavior.
name This property is required. String
The unique name of the resource.
args This property is required. InferenceClusterArgs
The arguments to resource properties.
options CustomResourceOptions
Bag of options to control resource's behavior.

Constructor example

The following reference example uses placeholder values for all input properties.

var inferenceClusterResource = new Azure.MachineLearning.InferenceCluster("inferenceClusterResource", new()
{
    KubernetesClusterId = "string",
    MachineLearningWorkspaceId = "string",
    ClusterPurpose = "string",
    Description = "string",
    Identity = new Azure.MachineLearning.Inputs.InferenceClusterIdentityArgs
    {
        Type = "string",
        IdentityIds = new[]
        {
            "string",
        },
        PrincipalId = "string",
        TenantId = "string",
    },
    Location = "string",
    Name = "string",
    Ssl = new Azure.MachineLearning.Inputs.InferenceClusterSslArgs
    {
        Cert = "string",
        Cname = "string",
        Key = "string",
        LeafDomainLabel = "string",
        OverwriteExistingDomain = false,
    },
    Tags = 
    {
        { "string", "string" },
    },
});
Copy
example, err := machinelearning.NewInferenceCluster(ctx, "inferenceClusterResource", &machinelearning.InferenceClusterArgs{
	KubernetesClusterId:        pulumi.String("string"),
	MachineLearningWorkspaceId: pulumi.String("string"),
	ClusterPurpose:             pulumi.String("string"),
	Description:                pulumi.String("string"),
	Identity: &machinelearning.InferenceClusterIdentityArgs{
		Type: pulumi.String("string"),
		IdentityIds: pulumi.StringArray{
			pulumi.String("string"),
		},
		PrincipalId: pulumi.String("string"),
		TenantId:    pulumi.String("string"),
	},
	Location: pulumi.String("string"),
	Name:     pulumi.String("string"),
	Ssl: &machinelearning.InferenceClusterSslArgs{
		Cert:                    pulumi.String("string"),
		Cname:                   pulumi.String("string"),
		Key:                     pulumi.String("string"),
		LeafDomainLabel:         pulumi.String("string"),
		OverwriteExistingDomain: pulumi.Bool(false),
	},
	Tags: pulumi.StringMap{
		"string": pulumi.String("string"),
	},
})
Copy
var inferenceClusterResource = new InferenceCluster("inferenceClusterResource", InferenceClusterArgs.builder()
    .kubernetesClusterId("string")
    .machineLearningWorkspaceId("string")
    .clusterPurpose("string")
    .description("string")
    .identity(InferenceClusterIdentityArgs.builder()
        .type("string")
        .identityIds("string")
        .principalId("string")
        .tenantId("string")
        .build())
    .location("string")
    .name("string")
    .ssl(InferenceClusterSslArgs.builder()
        .cert("string")
        .cname("string")
        .key("string")
        .leafDomainLabel("string")
        .overwriteExistingDomain(false)
        .build())
    .tags(Map.of("string", "string"))
    .build());
Copy
inference_cluster_resource = azure.machinelearning.InferenceCluster("inferenceClusterResource",
    kubernetes_cluster_id="string",
    machine_learning_workspace_id="string",
    cluster_purpose="string",
    description="string",
    identity={
        "type": "string",
        "identity_ids": ["string"],
        "principal_id": "string",
        "tenant_id": "string",
    },
    location="string",
    name="string",
    ssl={
        "cert": "string",
        "cname": "string",
        "key": "string",
        "leaf_domain_label": "string",
        "overwrite_existing_domain": False,
    },
    tags={
        "string": "string",
    })
Copy
const inferenceClusterResource = new azure.machinelearning.InferenceCluster("inferenceClusterResource", {
    kubernetesClusterId: "string",
    machineLearningWorkspaceId: "string",
    clusterPurpose: "string",
    description: "string",
    identity: {
        type: "string",
        identityIds: ["string"],
        principalId: "string",
        tenantId: "string",
    },
    location: "string",
    name: "string",
    ssl: {
        cert: "string",
        cname: "string",
        key: "string",
        leafDomainLabel: "string",
        overwriteExistingDomain: false,
    },
    tags: {
        string: "string",
    },
});
Copy
type: azure:machinelearning:InferenceCluster
properties:
    clusterPurpose: string
    description: string
    identity:
        identityIds:
            - string
        principalId: string
        tenantId: string
        type: string
    kubernetesClusterId: string
    location: string
    machineLearningWorkspaceId: string
    name: string
    ssl:
        cert: string
        cname: string
        key: string
        leafDomainLabel: string
        overwriteExistingDomain: false
    tags:
        string: string
Copy

InferenceCluster Resource Properties

To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.

Inputs

In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.

The InferenceCluster resource accepts the following input properties:

KubernetesClusterId
This property is required.
Changes to this property will trigger replacement.
string
The ID of the Kubernetes Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
MachineLearningWorkspaceId
This property is required.
Changes to this property will trigger replacement.
string
The ID of the Machine Learning Workspace. Changing this forces a new Machine Learning Inference Cluster to be created.
ClusterPurpose Changes to this property will trigger replacement. string

The purpose of the Inference Cluster. Options are DevTest, DenseProd and FastProd. If used for Development or Testing, use DevTest here. Default purpose is FastProd, which is recommended for production workloads. Changing this forces a new Machine Learning Inference Cluster to be created.

NOTE: When creating or attaching a cluster, if the cluster will be used for production (cluster_purpose = "FastProd"), then it must contain at least 12 virtual CPUs. The number of virtual CPUs can be calculated by multiplying the number of nodes in the cluster by the number of cores provided by the VM size selected. For example, if you use a VM size of "Standard_D3_v2", which has 4 virtual cores, then you should select 3 or greater as the number of nodes.

Description Changes to this property will trigger replacement. string
The description of the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
Identity Changes to this property will trigger replacement. InferenceClusterIdentity
An identity block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
Location Changes to this property will trigger replacement. string
The Azure Region where the Machine Learning Inference Cluster should exist. Changing this forces a new Machine Learning Inference Cluster to be created.
Name Changes to this property will trigger replacement. string
The name which should be used for this Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
Ssl Changes to this property will trigger replacement. InferenceClusterSsl
A ssl block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
Tags Changes to this property will trigger replacement. Dictionary<string, string>
A mapping of tags which should be assigned to the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
KubernetesClusterId
This property is required.
Changes to this property will trigger replacement.
string
The ID of the Kubernetes Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
MachineLearningWorkspaceId
This property is required.
Changes to this property will trigger replacement.
string
The ID of the Machine Learning Workspace. Changing this forces a new Machine Learning Inference Cluster to be created.
ClusterPurpose Changes to this property will trigger replacement. string

The purpose of the Inference Cluster. Options are DevTest, DenseProd and FastProd. If used for Development or Testing, use DevTest here. Default purpose is FastProd, which is recommended for production workloads. Changing this forces a new Machine Learning Inference Cluster to be created.

NOTE: When creating or attaching a cluster, if the cluster will be used for production (cluster_purpose = "FastProd"), then it must contain at least 12 virtual CPUs. The number of virtual CPUs can be calculated by multiplying the number of nodes in the cluster by the number of cores provided by the VM size selected. For example, if you use a VM size of "Standard_D3_v2", which has 4 virtual cores, then you should select 3 or greater as the number of nodes.

Description Changes to this property will trigger replacement. string
The description of the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
Identity Changes to this property will trigger replacement. InferenceClusterIdentityArgs
An identity block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
Location Changes to this property will trigger replacement. string
The Azure Region where the Machine Learning Inference Cluster should exist. Changing this forces a new Machine Learning Inference Cluster to be created.
Name Changes to this property will trigger replacement. string
The name which should be used for this Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
Ssl Changes to this property will trigger replacement. InferenceClusterSslArgs
A ssl block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
Tags Changes to this property will trigger replacement. map[string]string
A mapping of tags which should be assigned to the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
kubernetesClusterId
This property is required.
Changes to this property will trigger replacement.
String
The ID of the Kubernetes Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
machineLearningWorkspaceId
This property is required.
Changes to this property will trigger replacement.
String
The ID of the Machine Learning Workspace. Changing this forces a new Machine Learning Inference Cluster to be created.
clusterPurpose Changes to this property will trigger replacement. String

The purpose of the Inference Cluster. Options are DevTest, DenseProd and FastProd. If used for Development or Testing, use DevTest here. Default purpose is FastProd, which is recommended for production workloads. Changing this forces a new Machine Learning Inference Cluster to be created.

NOTE: When creating or attaching a cluster, if the cluster will be used for production (cluster_purpose = "FastProd"), then it must contain at least 12 virtual CPUs. The number of virtual CPUs can be calculated by multiplying the number of nodes in the cluster by the number of cores provided by the VM size selected. For example, if you use a VM size of "Standard_D3_v2", which has 4 virtual cores, then you should select 3 or greater as the number of nodes.

description Changes to this property will trigger replacement. String
The description of the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
identity Changes to this property will trigger replacement. InferenceClusterIdentity
An identity block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
location Changes to this property will trigger replacement. String
The Azure Region where the Machine Learning Inference Cluster should exist. Changing this forces a new Machine Learning Inference Cluster to be created.
name Changes to this property will trigger replacement. String
The name which should be used for this Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
ssl Changes to this property will trigger replacement. InferenceClusterSsl
A ssl block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
tags Changes to this property will trigger replacement. Map<String,String>
A mapping of tags which should be assigned to the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
kubernetesClusterId
This property is required.
Changes to this property will trigger replacement.
string
The ID of the Kubernetes Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
machineLearningWorkspaceId
This property is required.
Changes to this property will trigger replacement.
string
The ID of the Machine Learning Workspace. Changing this forces a new Machine Learning Inference Cluster to be created.
clusterPurpose Changes to this property will trigger replacement. string

The purpose of the Inference Cluster. Options are DevTest, DenseProd and FastProd. If used for Development or Testing, use DevTest here. Default purpose is FastProd, which is recommended for production workloads. Changing this forces a new Machine Learning Inference Cluster to be created.

NOTE: When creating or attaching a cluster, if the cluster will be used for production (cluster_purpose = "FastProd"), then it must contain at least 12 virtual CPUs. The number of virtual CPUs can be calculated by multiplying the number of nodes in the cluster by the number of cores provided by the VM size selected. For example, if you use a VM size of "Standard_D3_v2", which has 4 virtual cores, then you should select 3 or greater as the number of nodes.

description Changes to this property will trigger replacement. string
The description of the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
identity Changes to this property will trigger replacement. InferenceClusterIdentity
An identity block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
location Changes to this property will trigger replacement. string
The Azure Region where the Machine Learning Inference Cluster should exist. Changing this forces a new Machine Learning Inference Cluster to be created.
name Changes to this property will trigger replacement. string
The name which should be used for this Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
ssl Changes to this property will trigger replacement. InferenceClusterSsl
A ssl block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
tags Changes to this property will trigger replacement. {[key: string]: string}
A mapping of tags which should be assigned to the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
kubernetes_cluster_id
This property is required.
Changes to this property will trigger replacement.
str
The ID of the Kubernetes Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
machine_learning_workspace_id
This property is required.
Changes to this property will trigger replacement.
str
The ID of the Machine Learning Workspace. Changing this forces a new Machine Learning Inference Cluster to be created.
cluster_purpose Changes to this property will trigger replacement. str

The purpose of the Inference Cluster. Options are DevTest, DenseProd and FastProd. If used for Development or Testing, use DevTest here. Default purpose is FastProd, which is recommended for production workloads. Changing this forces a new Machine Learning Inference Cluster to be created.

NOTE: When creating or attaching a cluster, if the cluster will be used for production (cluster_purpose = "FastProd"), then it must contain at least 12 virtual CPUs. The number of virtual CPUs can be calculated by multiplying the number of nodes in the cluster by the number of cores provided by the VM size selected. For example, if you use a VM size of "Standard_D3_v2", which has 4 virtual cores, then you should select 3 or greater as the number of nodes.

description Changes to this property will trigger replacement. str
The description of the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
identity Changes to this property will trigger replacement. InferenceClusterIdentityArgs
An identity block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
location Changes to this property will trigger replacement. str
The Azure Region where the Machine Learning Inference Cluster should exist. Changing this forces a new Machine Learning Inference Cluster to be created.
name Changes to this property will trigger replacement. str
The name which should be used for this Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
ssl Changes to this property will trigger replacement. InferenceClusterSslArgs
A ssl block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
tags Changes to this property will trigger replacement. Mapping[str, str]
A mapping of tags which should be assigned to the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
kubernetesClusterId
This property is required.
Changes to this property will trigger replacement.
String
The ID of the Kubernetes Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
machineLearningWorkspaceId
This property is required.
Changes to this property will trigger replacement.
String
The ID of the Machine Learning Workspace. Changing this forces a new Machine Learning Inference Cluster to be created.
clusterPurpose Changes to this property will trigger replacement. String

The purpose of the Inference Cluster. Options are DevTest, DenseProd and FastProd. If used for Development or Testing, use DevTest here. Default purpose is FastProd, which is recommended for production workloads. Changing this forces a new Machine Learning Inference Cluster to be created.

NOTE: When creating or attaching a cluster, if the cluster will be used for production (cluster_purpose = "FastProd"), then it must contain at least 12 virtual CPUs. The number of virtual CPUs can be calculated by multiplying the number of nodes in the cluster by the number of cores provided by the VM size selected. For example, if you use a VM size of "Standard_D3_v2", which has 4 virtual cores, then you should select 3 or greater as the number of nodes.

description Changes to this property will trigger replacement. String
The description of the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
identity Changes to this property will trigger replacement. Property Map
An identity block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
location Changes to this property will trigger replacement. String
The Azure Region where the Machine Learning Inference Cluster should exist. Changing this forces a new Machine Learning Inference Cluster to be created.
name Changes to this property will trigger replacement. String
The name which should be used for this Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
ssl Changes to this property will trigger replacement. Property Map
A ssl block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
tags Changes to this property will trigger replacement. Map<String>
A mapping of tags which should be assigned to the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.

Outputs

All input properties are implicitly available as output properties. Additionally, the InferenceCluster resource produces the following output properties:

Id string
The provider-assigned unique ID for this managed resource.
Id string
The provider-assigned unique ID for this managed resource.
id String
The provider-assigned unique ID for this managed resource.
id string
The provider-assigned unique ID for this managed resource.
id str
The provider-assigned unique ID for this managed resource.
id String
The provider-assigned unique ID for this managed resource.

Look up Existing InferenceCluster Resource

Get an existing InferenceCluster resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.

public static get(name: string, id: Input<ID>, state?: InferenceClusterState, opts?: CustomResourceOptions): InferenceCluster
@staticmethod
def get(resource_name: str,
        id: str,
        opts: Optional[ResourceOptions] = None,
        cluster_purpose: Optional[str] = None,
        description: Optional[str] = None,
        identity: Optional[InferenceClusterIdentityArgs] = None,
        kubernetes_cluster_id: Optional[str] = None,
        location: Optional[str] = None,
        machine_learning_workspace_id: Optional[str] = None,
        name: Optional[str] = None,
        ssl: Optional[InferenceClusterSslArgs] = None,
        tags: Optional[Mapping[str, str]] = None) -> InferenceCluster
func GetInferenceCluster(ctx *Context, name string, id IDInput, state *InferenceClusterState, opts ...ResourceOption) (*InferenceCluster, error)
public static InferenceCluster Get(string name, Input<string> id, InferenceClusterState? state, CustomResourceOptions? opts = null)
public static InferenceCluster get(String name, Output<String> id, InferenceClusterState state, CustomResourceOptions options)
resources:  _:    type: azure:machinelearning:InferenceCluster    get:      id: ${id}
name This property is required.
The unique name of the resulting resource.
id This property is required.
The unique provider ID of the resource to lookup.
state
Any extra arguments used during the lookup.
opts
A bag of options that control this resource's behavior.
resource_name This property is required.
The unique name of the resulting resource.
id This property is required.
The unique provider ID of the resource to lookup.
name This property is required.
The unique name of the resulting resource.
id This property is required.
The unique provider ID of the resource to lookup.
state
Any extra arguments used during the lookup.
opts
A bag of options that control this resource's behavior.
name This property is required.
The unique name of the resulting resource.
id This property is required.
The unique provider ID of the resource to lookup.
state
Any extra arguments used during the lookup.
opts
A bag of options that control this resource's behavior.
name This property is required.
The unique name of the resulting resource.
id This property is required.
The unique provider ID of the resource to lookup.
state
Any extra arguments used during the lookup.
opts
A bag of options that control this resource's behavior.
The following state arguments are supported:
ClusterPurpose Changes to this property will trigger replacement. string

The purpose of the Inference Cluster. Options are DevTest, DenseProd and FastProd. If used for Development or Testing, use DevTest here. Default purpose is FastProd, which is recommended for production workloads. Changing this forces a new Machine Learning Inference Cluster to be created.

NOTE: When creating or attaching a cluster, if the cluster will be used for production (cluster_purpose = "FastProd"), then it must contain at least 12 virtual CPUs. The number of virtual CPUs can be calculated by multiplying the number of nodes in the cluster by the number of cores provided by the VM size selected. For example, if you use a VM size of "Standard_D3_v2", which has 4 virtual cores, then you should select 3 or greater as the number of nodes.

Description Changes to this property will trigger replacement. string
The description of the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
Identity Changes to this property will trigger replacement. InferenceClusterIdentity
An identity block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
KubernetesClusterId Changes to this property will trigger replacement. string
The ID of the Kubernetes Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
Location Changes to this property will trigger replacement. string
The Azure Region where the Machine Learning Inference Cluster should exist. Changing this forces a new Machine Learning Inference Cluster to be created.
MachineLearningWorkspaceId Changes to this property will trigger replacement. string
The ID of the Machine Learning Workspace. Changing this forces a new Machine Learning Inference Cluster to be created.
Name Changes to this property will trigger replacement. string
The name which should be used for this Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
Ssl Changes to this property will trigger replacement. InferenceClusterSsl
A ssl block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
Tags Changes to this property will trigger replacement. Dictionary<string, string>
A mapping of tags which should be assigned to the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
ClusterPurpose Changes to this property will trigger replacement. string

The purpose of the Inference Cluster. Options are DevTest, DenseProd and FastProd. If used for Development or Testing, use DevTest here. Default purpose is FastProd, which is recommended for production workloads. Changing this forces a new Machine Learning Inference Cluster to be created.

NOTE: When creating or attaching a cluster, if the cluster will be used for production (cluster_purpose = "FastProd"), then it must contain at least 12 virtual CPUs. The number of virtual CPUs can be calculated by multiplying the number of nodes in the cluster by the number of cores provided by the VM size selected. For example, if you use a VM size of "Standard_D3_v2", which has 4 virtual cores, then you should select 3 or greater as the number of nodes.

Description Changes to this property will trigger replacement. string
The description of the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
Identity Changes to this property will trigger replacement. InferenceClusterIdentityArgs
An identity block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
KubernetesClusterId Changes to this property will trigger replacement. string
The ID of the Kubernetes Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
Location Changes to this property will trigger replacement. string
The Azure Region where the Machine Learning Inference Cluster should exist. Changing this forces a new Machine Learning Inference Cluster to be created.
MachineLearningWorkspaceId Changes to this property will trigger replacement. string
The ID of the Machine Learning Workspace. Changing this forces a new Machine Learning Inference Cluster to be created.
Name Changes to this property will trigger replacement. string
The name which should be used for this Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
Ssl Changes to this property will trigger replacement. InferenceClusterSslArgs
A ssl block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
Tags Changes to this property will trigger replacement. map[string]string
A mapping of tags which should be assigned to the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
clusterPurpose Changes to this property will trigger replacement. String

The purpose of the Inference Cluster. Options are DevTest, DenseProd and FastProd. If used for Development or Testing, use DevTest here. Default purpose is FastProd, which is recommended for production workloads. Changing this forces a new Machine Learning Inference Cluster to be created.

NOTE: When creating or attaching a cluster, if the cluster will be used for production (cluster_purpose = "FastProd"), then it must contain at least 12 virtual CPUs. The number of virtual CPUs can be calculated by multiplying the number of nodes in the cluster by the number of cores provided by the VM size selected. For example, if you use a VM size of "Standard_D3_v2", which has 4 virtual cores, then you should select 3 or greater as the number of nodes.

description Changes to this property will trigger replacement. String
The description of the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
identity Changes to this property will trigger replacement. InferenceClusterIdentity
An identity block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
kubernetesClusterId Changes to this property will trigger replacement. String
The ID of the Kubernetes Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
location Changes to this property will trigger replacement. String
The Azure Region where the Machine Learning Inference Cluster should exist. Changing this forces a new Machine Learning Inference Cluster to be created.
machineLearningWorkspaceId Changes to this property will trigger replacement. String
The ID of the Machine Learning Workspace. Changing this forces a new Machine Learning Inference Cluster to be created.
name Changes to this property will trigger replacement. String
The name which should be used for this Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
ssl Changes to this property will trigger replacement. InferenceClusterSsl
A ssl block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
tags Changes to this property will trigger replacement. Map<String,String>
A mapping of tags which should be assigned to the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
clusterPurpose Changes to this property will trigger replacement. string

The purpose of the Inference Cluster. Options are DevTest, DenseProd and FastProd. If used for Development or Testing, use DevTest here. Default purpose is FastProd, which is recommended for production workloads. Changing this forces a new Machine Learning Inference Cluster to be created.

NOTE: When creating or attaching a cluster, if the cluster will be used for production (cluster_purpose = "FastProd"), then it must contain at least 12 virtual CPUs. The number of virtual CPUs can be calculated by multiplying the number of nodes in the cluster by the number of cores provided by the VM size selected. For example, if you use a VM size of "Standard_D3_v2", which has 4 virtual cores, then you should select 3 or greater as the number of nodes.

description Changes to this property will trigger replacement. string
The description of the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
identity Changes to this property will trigger replacement. InferenceClusterIdentity
An identity block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
kubernetesClusterId Changes to this property will trigger replacement. string
The ID of the Kubernetes Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
location Changes to this property will trigger replacement. string
The Azure Region where the Machine Learning Inference Cluster should exist. Changing this forces a new Machine Learning Inference Cluster to be created.
machineLearningWorkspaceId Changes to this property will trigger replacement. string
The ID of the Machine Learning Workspace. Changing this forces a new Machine Learning Inference Cluster to be created.
name Changes to this property will trigger replacement. string
The name which should be used for this Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
ssl Changes to this property will trigger replacement. InferenceClusterSsl
A ssl block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
tags Changes to this property will trigger replacement. {[key: string]: string}
A mapping of tags which should be assigned to the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
cluster_purpose Changes to this property will trigger replacement. str

The purpose of the Inference Cluster. Options are DevTest, DenseProd and FastProd. If used for Development or Testing, use DevTest here. Default purpose is FastProd, which is recommended for production workloads. Changing this forces a new Machine Learning Inference Cluster to be created.

NOTE: When creating or attaching a cluster, if the cluster will be used for production (cluster_purpose = "FastProd"), then it must contain at least 12 virtual CPUs. The number of virtual CPUs can be calculated by multiplying the number of nodes in the cluster by the number of cores provided by the VM size selected. For example, if you use a VM size of "Standard_D3_v2", which has 4 virtual cores, then you should select 3 or greater as the number of nodes.

description Changes to this property will trigger replacement. str
The description of the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
identity Changes to this property will trigger replacement. InferenceClusterIdentityArgs
An identity block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
kubernetes_cluster_id Changes to this property will trigger replacement. str
The ID of the Kubernetes Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
location Changes to this property will trigger replacement. str
The Azure Region where the Machine Learning Inference Cluster should exist. Changing this forces a new Machine Learning Inference Cluster to be created.
machine_learning_workspace_id Changes to this property will trigger replacement. str
The ID of the Machine Learning Workspace. Changing this forces a new Machine Learning Inference Cluster to be created.
name Changes to this property will trigger replacement. str
The name which should be used for this Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
ssl Changes to this property will trigger replacement. InferenceClusterSslArgs
A ssl block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
tags Changes to this property will trigger replacement. Mapping[str, str]
A mapping of tags which should be assigned to the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
clusterPurpose Changes to this property will trigger replacement. String

The purpose of the Inference Cluster. Options are DevTest, DenseProd and FastProd. If used for Development or Testing, use DevTest here. Default purpose is FastProd, which is recommended for production workloads. Changing this forces a new Machine Learning Inference Cluster to be created.

NOTE: When creating or attaching a cluster, if the cluster will be used for production (cluster_purpose = "FastProd"), then it must contain at least 12 virtual CPUs. The number of virtual CPUs can be calculated by multiplying the number of nodes in the cluster by the number of cores provided by the VM size selected. For example, if you use a VM size of "Standard_D3_v2", which has 4 virtual cores, then you should select 3 or greater as the number of nodes.

description Changes to this property will trigger replacement. String
The description of the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
identity Changes to this property will trigger replacement. Property Map
An identity block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
kubernetesClusterId Changes to this property will trigger replacement. String
The ID of the Kubernetes Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
location Changes to this property will trigger replacement. String
The Azure Region where the Machine Learning Inference Cluster should exist. Changing this forces a new Machine Learning Inference Cluster to be created.
machineLearningWorkspaceId Changes to this property will trigger replacement. String
The ID of the Machine Learning Workspace. Changing this forces a new Machine Learning Inference Cluster to be created.
name Changes to this property will trigger replacement. String
The name which should be used for this Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.
ssl Changes to this property will trigger replacement. Property Map
A ssl block as defined below. Changing this forces a new Machine Learning Inference Cluster to be created.
tags Changes to this property will trigger replacement. Map<String>
A mapping of tags which should be assigned to the Machine Learning Inference Cluster. Changing this forces a new Machine Learning Inference Cluster to be created.

Supporting Types

InferenceClusterIdentity
, InferenceClusterIdentityArgs

Type
This property is required.
Changes to this property will trigger replacement.
string
Specifies the type of Managed Service Identity that should be configured on this Machine Learning Inference Cluster. Possible values are SystemAssigned, UserAssigned, SystemAssigned, UserAssigned (to enable both). Changing this forces a new resource to be created.
IdentityIds Changes to this property will trigger replacement. List<string>

Specifies a list of User Assigned Managed Identity IDs to be assigned to this Machine Learning Inference Cluster. Changing this forces a new resource to be created.

NOTE: This is required when type is set to UserAssigned or SystemAssigned, UserAssigned.

PrincipalId string
The Principal ID for the Service Principal associated with the Managed Service Identity of this Machine Learning Inference Cluster.
TenantId string
The Tenant ID for the Service Principal associated with the Managed Service Identity of this Machine Learning Inference Cluster.
Type
This property is required.
Changes to this property will trigger replacement.
string
Specifies the type of Managed Service Identity that should be configured on this Machine Learning Inference Cluster. Possible values are SystemAssigned, UserAssigned, SystemAssigned, UserAssigned (to enable both). Changing this forces a new resource to be created.
IdentityIds Changes to this property will trigger replacement. []string

Specifies a list of User Assigned Managed Identity IDs to be assigned to this Machine Learning Inference Cluster. Changing this forces a new resource to be created.

NOTE: This is required when type is set to UserAssigned or SystemAssigned, UserAssigned.

PrincipalId string
The Principal ID for the Service Principal associated with the Managed Service Identity of this Machine Learning Inference Cluster.
TenantId string
The Tenant ID for the Service Principal associated with the Managed Service Identity of this Machine Learning Inference Cluster.
type
This property is required.
Changes to this property will trigger replacement.
String
Specifies the type of Managed Service Identity that should be configured on this Machine Learning Inference Cluster. Possible values are SystemAssigned, UserAssigned, SystemAssigned, UserAssigned (to enable both). Changing this forces a new resource to be created.
identityIds Changes to this property will trigger replacement. List<String>

Specifies a list of User Assigned Managed Identity IDs to be assigned to this Machine Learning Inference Cluster. Changing this forces a new resource to be created.

NOTE: This is required when type is set to UserAssigned or SystemAssigned, UserAssigned.

principalId String
The Principal ID for the Service Principal associated with the Managed Service Identity of this Machine Learning Inference Cluster.
tenantId String
The Tenant ID for the Service Principal associated with the Managed Service Identity of this Machine Learning Inference Cluster.
type
This property is required.
Changes to this property will trigger replacement.
string
Specifies the type of Managed Service Identity that should be configured on this Machine Learning Inference Cluster. Possible values are SystemAssigned, UserAssigned, SystemAssigned, UserAssigned (to enable both). Changing this forces a new resource to be created.
identityIds Changes to this property will trigger replacement. string[]

Specifies a list of User Assigned Managed Identity IDs to be assigned to this Machine Learning Inference Cluster. Changing this forces a new resource to be created.

NOTE: This is required when type is set to UserAssigned or SystemAssigned, UserAssigned.

principalId string
The Principal ID for the Service Principal associated with the Managed Service Identity of this Machine Learning Inference Cluster.
tenantId string
The Tenant ID for the Service Principal associated with the Managed Service Identity of this Machine Learning Inference Cluster.
type
This property is required.
Changes to this property will trigger replacement.
str
Specifies the type of Managed Service Identity that should be configured on this Machine Learning Inference Cluster. Possible values are SystemAssigned, UserAssigned, SystemAssigned, UserAssigned (to enable both). Changing this forces a new resource to be created.
identity_ids Changes to this property will trigger replacement. Sequence[str]

Specifies a list of User Assigned Managed Identity IDs to be assigned to this Machine Learning Inference Cluster. Changing this forces a new resource to be created.

NOTE: This is required when type is set to UserAssigned or SystemAssigned, UserAssigned.

principal_id str
The Principal ID for the Service Principal associated with the Managed Service Identity of this Machine Learning Inference Cluster.
tenant_id str
The Tenant ID for the Service Principal associated with the Managed Service Identity of this Machine Learning Inference Cluster.
type
This property is required.
Changes to this property will trigger replacement.
String
Specifies the type of Managed Service Identity that should be configured on this Machine Learning Inference Cluster. Possible values are SystemAssigned, UserAssigned, SystemAssigned, UserAssigned (to enable both). Changing this forces a new resource to be created.
identityIds Changes to this property will trigger replacement. List<String>

Specifies a list of User Assigned Managed Identity IDs to be assigned to this Machine Learning Inference Cluster. Changing this forces a new resource to be created.

NOTE: This is required when type is set to UserAssigned or SystemAssigned, UserAssigned.

principalId String
The Principal ID for the Service Principal associated with the Managed Service Identity of this Machine Learning Inference Cluster.
tenantId String
The Tenant ID for the Service Principal associated with the Managed Service Identity of this Machine Learning Inference Cluster.

InferenceClusterSsl
, InferenceClusterSslArgs

Cert Changes to this property will trigger replacement. string
The certificate for the SSL configuration.Conflicts with ssl[0].leaf_domain_label,ssl[0].overwrite_existing_domain. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
Cname Changes to this property will trigger replacement. string
The cname of the SSL configuration.Conflicts with ssl[0].leaf_domain_label,ssl[0].overwrite_existing_domain. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
Key Changes to this property will trigger replacement. string
The key content for the SSL configuration.Conflicts with ssl[0].leaf_domain_label,ssl[0].overwrite_existing_domain. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
LeafDomainLabel Changes to this property will trigger replacement. string
The leaf domain label for the SSL configuration. Conflicts with ssl[0].cert,ssl[0].key,ssl[0].cname. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
OverwriteExistingDomain Changes to this property will trigger replacement. bool
Whether or not to overwrite existing leaf domain. Conflicts with ssl[0].cert,ssl[0].key,ssl[0].cname Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
Cert Changes to this property will trigger replacement. string
The certificate for the SSL configuration.Conflicts with ssl[0].leaf_domain_label,ssl[0].overwrite_existing_domain. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
Cname Changes to this property will trigger replacement. string
The cname of the SSL configuration.Conflicts with ssl[0].leaf_domain_label,ssl[0].overwrite_existing_domain. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
Key Changes to this property will trigger replacement. string
The key content for the SSL configuration.Conflicts with ssl[0].leaf_domain_label,ssl[0].overwrite_existing_domain. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
LeafDomainLabel Changes to this property will trigger replacement. string
The leaf domain label for the SSL configuration. Conflicts with ssl[0].cert,ssl[0].key,ssl[0].cname. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
OverwriteExistingDomain Changes to this property will trigger replacement. bool
Whether or not to overwrite existing leaf domain. Conflicts with ssl[0].cert,ssl[0].key,ssl[0].cname Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
cert Changes to this property will trigger replacement. String
The certificate for the SSL configuration.Conflicts with ssl[0].leaf_domain_label,ssl[0].overwrite_existing_domain. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
cname Changes to this property will trigger replacement. String
The cname of the SSL configuration.Conflicts with ssl[0].leaf_domain_label,ssl[0].overwrite_existing_domain. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
key Changes to this property will trigger replacement. String
The key content for the SSL configuration.Conflicts with ssl[0].leaf_domain_label,ssl[0].overwrite_existing_domain. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
leafDomainLabel Changes to this property will trigger replacement. String
The leaf domain label for the SSL configuration. Conflicts with ssl[0].cert,ssl[0].key,ssl[0].cname. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
overwriteExistingDomain Changes to this property will trigger replacement. Boolean
Whether or not to overwrite existing leaf domain. Conflicts with ssl[0].cert,ssl[0].key,ssl[0].cname Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
cert Changes to this property will trigger replacement. string
The certificate for the SSL configuration.Conflicts with ssl[0].leaf_domain_label,ssl[0].overwrite_existing_domain. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
cname Changes to this property will trigger replacement. string
The cname of the SSL configuration.Conflicts with ssl[0].leaf_domain_label,ssl[0].overwrite_existing_domain. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
key Changes to this property will trigger replacement. string
The key content for the SSL configuration.Conflicts with ssl[0].leaf_domain_label,ssl[0].overwrite_existing_domain. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
leafDomainLabel Changes to this property will trigger replacement. string
The leaf domain label for the SSL configuration. Conflicts with ssl[0].cert,ssl[0].key,ssl[0].cname. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
overwriteExistingDomain Changes to this property will trigger replacement. boolean
Whether or not to overwrite existing leaf domain. Conflicts with ssl[0].cert,ssl[0].key,ssl[0].cname Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
cert Changes to this property will trigger replacement. str
The certificate for the SSL configuration.Conflicts with ssl[0].leaf_domain_label,ssl[0].overwrite_existing_domain. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
cname Changes to this property will trigger replacement. str
The cname of the SSL configuration.Conflicts with ssl[0].leaf_domain_label,ssl[0].overwrite_existing_domain. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
key Changes to this property will trigger replacement. str
The key content for the SSL configuration.Conflicts with ssl[0].leaf_domain_label,ssl[0].overwrite_existing_domain. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
leaf_domain_label Changes to this property will trigger replacement. str
The leaf domain label for the SSL configuration. Conflicts with ssl[0].cert,ssl[0].key,ssl[0].cname. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
overwrite_existing_domain Changes to this property will trigger replacement. bool
Whether or not to overwrite existing leaf domain. Conflicts with ssl[0].cert,ssl[0].key,ssl[0].cname Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
cert Changes to this property will trigger replacement. String
The certificate for the SSL configuration.Conflicts with ssl[0].leaf_domain_label,ssl[0].overwrite_existing_domain. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
cname Changes to this property will trigger replacement. String
The cname of the SSL configuration.Conflicts with ssl[0].leaf_domain_label,ssl[0].overwrite_existing_domain. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
key Changes to this property will trigger replacement. String
The key content for the SSL configuration.Conflicts with ssl[0].leaf_domain_label,ssl[0].overwrite_existing_domain. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
leafDomainLabel Changes to this property will trigger replacement. String
The leaf domain label for the SSL configuration. Conflicts with ssl[0].cert,ssl[0].key,ssl[0].cname. Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".
overwriteExistingDomain Changes to this property will trigger replacement. Boolean
Whether or not to overwrite existing leaf domain. Conflicts with ssl[0].cert,ssl[0].key,ssl[0].cname Changing this forces a new Machine Learning Inference Cluster to be created. Defaults to "".

Import

Machine Learning Inference Clusters can be imported using the resource id, e.g.

$ pulumi import azure:machinelearning/inferenceCluster:InferenceCluster example /subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/resGroup1/providers/Microsoft.MachineLearningServices/workspaces/workspace1/computes/cluster1
Copy

To learn more about importing existing cloud resources, see Importing resources.

Package Details

Repository
Azure Classic pulumi/pulumi-azure
License
Apache-2.0
Notes
This Pulumi package is based on the azurerm Terraform Provider.